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Abstract 8 
 9 
Interstory drift response is one of most important quantities to quickly assess performance and 10 
damages in buildings. Nevertheless, direct measurement of interstory drift is difficult and 11 
expensive, because a stationary reference is required to attach measurement devices. With the 12 
goal of accurate and fast reference-free estimation, this paper proposes a new strategy to 13 
determine dynamic interstory drifts using accelerations. In particular, a Tikhonov regularization 14 
is adopted in a generalized minimization problem to achieve an efficient and stable FIR filter. 15 
Furthermore, due to independent clocks in wireless sensors, accurate time synchronization of 16 
the records is critical, and consequently, a strategy for accurate synchronization is also 17 
presented. Finally, the proposed strategy has been deployed on edge devices for onboard real-18 
time interstory drift estimation. The proposed method for dynamic interstory drift estimation is 19 
validated, first, by numerical simulation using earthquake records as base excitation of linear 20 
and nonlinear buildings, as well as through laboratory shake table experiments. Both numerical 21 
and lab test results show good agreement of dynamic interstory drifts between the measured 22 
value and estimated results, demonstrating the efficacy of the proposed method to estimate the 23 
dynamic displacements of seismically excited structures. 24 
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1. INTRODUCTION 29 

Measurement of structural displacements under service or extreme loads are typically 30 

desired for applications such as calibrating structural designs and assessing structural 31 

performance (Skolnik and Wallace, 2010). Furthermore, buildings interstory drifts are 32 

recognized as a critical quantity to estimate structural performance and damage (Bennett and 33 

Batroney, 1997). Direct measurement of interstory drift is difficult because it is the difference 34 

of displacement between two stories, e.g., using linear variable differential transformers and 35 

laser-based sensors (Islam et al, 2016). Alternatively, displacement measurements can be 36 

obtained directly by non-contact sensors from a remote location, e.g., using laser Doppler 37 

vibrometers which can be quite expensive (Kim and Sohn, 2017). Recently, computer vision 38 

systems, such as commercial grade cameras/smartphones or unmanned aerial systems has 39 

received increasing attention. However, they usually require a reference on the video which 40 

may not be readily available (Luo and Feng, 2018; Lee et al, 2020). In addition, the sampling 41 

frequency is limited by the typically low camera frame rate, the visibility is governed by 42 

environmental and lighting conditions, and the accuracy is affected by long distances from the 43 

viewpoint to the region of interest. Note that the existing solutions are not well-suited for 44 

interstory drift measurement of real-scale buildings as either the cost are prohibitive, a reference 45 

is needed, or implementation is challenging. 46 
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Researchers have proposed to calculate interstory drifts indirectly from estimated 47 

displacement using other measurements such as velocities, accelerations, and/or strains. 48 

Estimation using accelerations has good potential because of the ease and low cost to measure 49 

accelerations reliably. However, displacement estimation using double integration diverges, 50 

because it amplifies the noise in the acceleration, especially in low-frequency domain. Many 51 

solutions have been proposed for this problem (Kim et al, 2014; Nagayama et al, 2017; Hester 52 

et al, 2017; Abé and Fujino, 2017; Gindy et al, 2008; Liu et al, 2017). For example, a recursive 53 

high-pass filter and a recursive integrator are proposed to achieve real-time online displacement 54 

estimation by means of multi-round baseline correction, filtering, and integration (Zheng et al, 55 

2019). This method has yet to be implemented in edge devices for real-time demonstration. An 56 

extended Kalman filter with an embedded Bayesian noise-parameter updating has also been 57 

proposed to reduce numerical errors in displacement estimation from seismic accelerations. 58 

However, it requires a nonlinear model, which may not be available for many scenarios (Pan et 59 

al, 2021). To improve the accuracy, the author has proposed an approach to minimize the L2-60 

norm of a functional with a Tikhonov regularization, which represents a higher-order derivative 61 

of the difference of the measured acceleration and the second derivative of the estimated 62 

displacement (Gomez et al, 2018). On the other hand, the residual deformation, corresponding 63 

to the DC component in the frequency domain, is not able to be captured by integrating. To 64 

address this concern, many researchers consider data fusion, leveraging another type of sensors 65 
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which can capture the low-frequency component and stitching it together with the information 66 

obtained from accelerometers (Park et al, 2013; Zhu et al, 2020; Park et al, 2018; Kim et al, 67 

2018). This paper is focused on deployment scenarios where only accelerometers are available, 68 

which is very common for full-scale deployment of wireless smart sensors in buildings. Indeed, 69 

acceleration is the most reliable and popular measurement, mainly because accelerometers are 70 

easy to install and do not require complex surface mounting.  71 

In this paper, the goal is to estimate interstory drift from acceleration-only measurements 72 

using wireless smart sensors, with a focus on time synchronization while comparing 73 

displacement estimation from different sensors. Wireless smart sensors (WSS) are cost-74 

effective small-size integrated data acquisition devices, which consist of sensors (most often 75 

accelerometers), computing unit, wireless transceiver, and/or actuation interface (Lynch et al, 76 

2006; Rawat et al, 2014). Major efforts have been spent on developing WSS prototypes with 77 

advancements both in hardware and software, e.g., iMote2 and Xnode developed by researchers 78 

from University of Illinois (Rice et al, 2010; Rice et al, 2011; Jo et al, 2011; Spencer et al, 2017; 79 

Fu et al, 2016; Fu et al, 2019). While efficient for displacement estimation, WSS have several 80 

inherent challenges that must be addressed, one of which is time synchronization. In particular, 81 

WSS use local clocks, which do not share a global time and they drift at different rates. 82 

Furthermore, synchronization of local clocks of different sensor nodes does not guarantee the 83 

synchronization of measurement data obtained from each sensor node (Nagayama and Spencer, 84 
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2007). The usage of unsynchronized data may negatively affect subsequent analysis, especially 85 

for interstory drift estimation, which relies on the relative displacement estimations between 86 

each pair of sensors. Though some studies have developed and implemented the technologies 87 

of time synchronization on several WSS platforms (Wang et al, 2007; Kim et al, 2010; Bocca 88 

et al, 2011), most of the work solely considers clock and not data synchronization. 89 

This study proposes the use of a FIR filter via Tikhonov regularization to estimate accurate 90 

dynamic interstory drifts in buildings based on acceleration measurements at different floors. 91 

Furthermore, an efficient time synchronization strategy is proposed to enable the usage of 92 

wireless smart sensors to obtain accurate dynamic interstory drift estimation. The filter method 93 

together with the time synchronization strategy is finally deployed on a network of WSS and 94 

executed onboard using limited computational resources.  95 

 96 

2. DYNAMIC INTERSTORY DRIFT ESTIMATION FROM ACCELERATION RECORDS 97 

The use of Tikhonov regularization to estimate dynamic displacements was first proposed 98 

by Hong’s group (Hong et al, 2010; Lee et al, 2010), and subsequently improved by Gomez et 99 

al (2018) to estimate dynamic reference-free bridge displacements. Among other dynamic 100 

displacement estimation algorithms, it gives the best accuracy, introduce zero phase delays in 101 

the measurement, and calculates the results in an efficient time. Therefore, this idea is adopted 102 

in this study in buildings to estimate dynamic interstory drifts. For the convenience of the reader, 103 



6 

 

a brief overview of the filter formulation is presented in the following subsection. 104 

2.1 Displacement estimation formulation 105 

The following functional with Tikhonov regularization represents the error in a high-order 106 

derivative of the difference between estimated displacements and measured accelerations 107 

(Gomez et al, 2019), 108 

( )
22 2

2
2 2

1 1
2 2

n
n

nT T

d d uu a dt u dt
dt dt

β
−

−

  
Π = − +  

  
∫ ∫       (1) 109 

where T  is the time window of interest 1 2t t t< < , a  is the measured acceleration,  is 110 

the estimated displacement, 2n ≥  is an integer named as the order of the functional, and 111 

0β >  is a parameter known as the factor of Tikhonov regularization. 112 

From the previous functional, the following ordinary differential equation is obtained 113 

based on the variational calculus.  114 

( )
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−+ − = < <    (2) 115 

To achieve a unique solution, the boundary conditions (BC) for the differential equation are 116 

known displacements and derivatives at the ends of the time window 1 2,t t . However, these BC 117 

are not available for this application. Although, the BC affect the solution close to ends of the 118 

time window, their influence is smaller towards the center of the time window. Consequently, 119 

using superposing moving windows centered at each time point minimize the effect of the 120 

unknown BC. 121 

u
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Following the Fourier transform of the differential equation, the frequency response is 122 

obtained. 123 

( )
2 2

2

n

ua n nH ωω
ω β

−

= −
+

           (3) 124 

The regularization factor β  is computed by defining a target frequency fT and target accuracy 125 

αT, obtaining the following expression.    126 

( )21 2Tn T
T

fα
β π

α
−

=           (4) 127 

The previous continuous-time representation is unstable, therefore, a discrete FIR filter is 128 

considered instead, a FIR filter of type I with generalized linear phase is chosen. The FIR filter 129 

is represented by a vector of coefficients c with the length of 2k+1. Consequently, the estimated 130 

displacement is given in terms of the measured acceleration and the FIR filter by the formula  131 

( ) ( ) ( )2
1

k

k p
p k
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=−

= ∆ + ∆∑        (5) 132 

where the coefficients of filter are given by 133 
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The filter length is determined by the normalized window length wN , the target frequency 135 

fT, and the sampling frequency fs, expressed as,  136 

2
s

w
T

fk N
f

=         (7) 137 

The normalized time window is defined, so as to make the impulse response function end at 138 
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zeros in both ends, which minimizes Gibbs’ phenomenon and rippling in the frequency domain. 139 

Appropriate values for the normalized window length wN  are presented in (Gomez et al, 2019). 140 

2.2 FIR filter for interstory drift estimation 141 

To estimate dynamic interstory drifts, acceleration records two consecutive floors are 142 

required: ia  and 1ia + . The measurements need to be synchronized in time and have the same 143 

sampling frequency. For wired sensors, time synchronization is not a problem even for long 144 

cables, but in wireless smart sensors, it is a major challenge to overcome. Section 3 describes 145 

the details of this problem and a solution strategy. 146 

The dynamic interstory drifts are estimated using the FIR filter proposed in the previous 147 

section, which is defined by the vector of coefficients c. Consequently, the estimated 148 

displacements at the two locations are given in terms of the measured accelerations and the FIR 149 

filter by the formula  150 

( ) ( ) ( )2
1

k

i k p i
p k

u t t c a t p t+ +
=−

= ∆ + ∆∑           (8) 151 

( ) ( ) ( )2
1 1 1

k

i k p i
p k

u t t c a t p t+ + + +
=−

= ∆ + ∆∑    (9) 152 

where the coefficients of filter are given by Eq. (6) and the filter length is given by Eq. (7).  153 

The same FIR filter is used at both locations which come from the same structure, and both 154 

acceleration records assume to use the same sampling rate. Therefore, the estimated interstory 155 

drift is determined by the difference of these displacement values from acceleration records.  156 
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where 1i i ia a a+∆ = −  is the relative acceleration of consecutive floors. 159 

The filter coefficients need to be computed only once at the beginning. In addition, the 160 

proposed method requires the multiplication of two vectors, coefficients and acceleration, to 161 

estimate interstory drifts at each time step. However, this filter is not causal, as it requires the 162 

measured relative accelerations of k points in the future. Then, this estimation is obtained with 163 

a time delay equal to half the time window length; however, this would typically lead to small 164 

lags in the estimation, and it can be implemented in near-real time. 165 

 166 

3. WIRELESS SMART SENSORS AND TIME SYNCHRONIZATION 167 

This section presents the details about wireless smart sensors and strategies for time 168 

synchronization of the time records. The proposed method is deployed in wireless smart sensors 169 

for estimating dynamic interstory drifts, and time synchronization between different sensors is 170 

addressed by a two-point two-stage strategy proposed by the authors. 171 

3.1 High-fidelity sensor platform 172 

To provide high-quality measurement and high-efficiency processing for drift estimation, 173 

this study leverages a next-generation wireless smart sensor platform, the Xnode (Fig. 1) 174 
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(Spencer et al, 2017), because of its excellent features both in hardware and software. In 175 

particular, the Xnode employs an 8-channel, 24-bit analog-to-digital converter, which enables 176 

high-resolution data collection at a high sampling rate of up to 16kHz. In addition, the Xnode 177 

features a powerful microprocessor that operates with a dual Cortex core at frequencies up to 178 

204MHz, suitable for data-intensive on-board computation, like the interstory drift estimation. 179 

On the software side, in contrast to most commercial WSS, the Xnode is open-source, allowing 180 

users to modify and customize the software and applications. Moreover, the Xnode retains 181 

much of the successful SOA-based middleware of the Illinois Structural Health Monitoring 182 

Services Toolsuite (Rice et al, 2010) and implements it in a preemptive multitasking framework 183 

using the standard C programming language (Fu et al, 2016), which significantly facilitates the 184 

end-user development. More comprehensive performance efficacy and discussion of the Xnode 185 

can be found in the paper (Fu et al, 2018; Fu et al, 2019). Xnode smart sensor is leveraged in 186 

this study for deployment and evaluation of interstory drift estimation. Fig. 1 shows the 187 

hardware and software details of the Xnode smart sensor.  188 

 189 

Fig. 1. Xnode smart sensor: (a) hardware platform, (b) software framework  190 
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 191 

3.2 Two-point two-stage time synchronization for interstory drift estimation 192 

To address the challenge of time synchronization between wireless smart sensors, an 193 

efficient strategy, named as two-point two-stage time synchronization, is proposed for 194 

interstory drift estimation. The two stages include clock and data synchronization. This section 195 

provides a brief description of the development and implementation of this strategy.  196 

To prepare for the time synchronization strategy, lab tests were first conducted to quantify 197 

the clock drift behavior of wireless smart sensors, Xnodes in this study. The test results reveal 198 

that, without time synchronization, a drift rate achieves up to 13 µs/s, while nonlinear drift 199 

behavior is negligible and sampling rate is stable (Fu et al., 2021a). Based on the observations, 200 

an efficient two-point clock synchronization is developed, as shown in Fig. 2. Specifically, 201 

before sensing starts, a series of beacons with global time stamps are broadcasted from the 202 

gateway node to sensor nodes at an interval of 1 ms. Upon reception of beacons, each sensor 203 

node records the local clock and obtain a series of corresponding clock offsets. The medium 204 

value of these offsets is selected as the 1st Point of clock information before sensing starts. 205 

Specifically, in this process, up to 10 beacons at 5-millisecond intervals were exchanged 206 

between the gateway node and all the sensor nodes to obtain the clock offsets before sensing 207 

(1st point), recorded as Δ𝑡𝑡𝑗𝑗(𝑖𝑖),  208 

𝛥𝛥𝑡𝑡𝑗𝑗(𝑖𝑖) = 𝑡𝑡𝑙𝑙𝑙𝑙𝑗𝑗(𝑖𝑖) − 𝑡𝑡𝑔𝑔𝑙𝑙𝑗𝑗(𝑖𝑖),  𝑖𝑖 ∈ [1,9]                      (12) 209 
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Where tgb(i) is transmission time of beacon i, recorded in the gateway node, and tlb(i) is 210 

reception time, recorded in the sensor nodes. After at least five offset values are given, the 211 

median of the offset values, 𝛥𝛥𝑡𝑡1 , and associated local clock, 𝑡𝑡1 , are used as the clock 212 

information pair for the current round of point synchronization. In the meantime, the current 213 

clock offset is compensated, such that all the sensor nodes start sensing approximately at the 214 

same designated time, 𝑇𝑇start. In addition, the time to stop sensing is obtained as 𝑇𝑇stop = 𝑇𝑇start +215 

𝑇𝑇sensing , where 𝑇𝑇sensing  is specified by users. During sensing, the updated local clock is 216 

recorded when sensing starts and stops, labeled as 𝑡𝑡start and 𝑡𝑡stop, respectively.  217 

After sensing stops, similarly, another round of clock offset investigation is carried out, 218 

and the 2nd Point of clock information obtained. Afterwards, clock drift is estimated based on 219 

clock offsets obtained in the 1st Point and the 2nd Point,  220 

𝑘𝑘 = (𝛥𝛥𝑡𝑡2 − 𝛥𝛥𝑡𝑡1)/(𝑡𝑡2 − 𝑡𝑡1 ),  𝑏𝑏 = 𝛥𝛥𝑡𝑡2                   (13) 221 

which are used to correct the time stamp 𝑡𝑡𝑙𝑙𝑙𝑙 in each sensor node as  222 

𝑡𝑡𝑙𝑙𝑙𝑙
, = 𝑡𝑡𝑙𝑙𝑙𝑙 − 𝑏𝑏 − 𝑘𝑘(𝑡𝑡𝑙𝑙𝑙𝑙 − 𝑡𝑡2)                          (14)                                                223 

In addition, we can obtain the offset of start-up sensing time in Eq. (15), which will be further 224 

used for the next step of data synchronization process.  225 

𝑑𝑑𝑡𝑡 = 1
2
�𝑇𝑇start + 𝑇𝑇stop − 𝑡𝑡start − 𝑡𝑡stop�                     (15) 226 

Finally, a resampling-based approach developed by Nagayama and Spencer (2007) is 227 

applied to achieve data synchronization. It will address three uncertainties for synchronization: 228 
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offset in start-up time, sampling rate difference among sensor nodes, and sampling rate 229 

fluctuation in a single node. For the completeness of the methodology, a brief discussion about 230 

this approach is conducted next. The basic idea of resampling is to achieve a signal with a factor 231 

of L/M, via upsampling by L, filtering, and downsampling by M. In the process, a polyphase 232 

implementation is applied to simplify the execution of an FIR filter. For a non-integer 233 

downsampling factor of M to achieve a precise sampling rate, the introduction of an initial delay 234 

(before upsampling and linear interpolation) is applied in the downsampling process. assuming 235 

that the output data points do not necessarily correspond to the points on the upsampled signal. 236 

For data synchronization, the entire sampling dataset is divided into several blocks. In each 237 

block, the offset of starting time (i.e., first data point) is estimated first; and the actual sampling 238 

rate is also calculated by (𝑡𝑡current − 𝑡𝑡last)/𝑁𝑁. The timestamps after clock synchronization are 239 

then used to obtain the misalignment of sample points. Finally, resampling is applied to each 240 

block of data. 241 

In summary, combining clock synchronization and data synchronization is proposed. This 242 

strategy achieves time synchronization in an efficient way, whilst compensating the effect of 243 

nonlinear clock drift. Compared with conventional methods, it is effective and accurate, which 244 

is suitable for interstory drift estimation in this study. Laboratory tests were conducted to 245 

evaluate the precision of the proposed approach, using three sensor nodes as leaf nodes and one 246 

gateway node. The pairwise synchronization errors are collected and averaged for comparison. 247 
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Table 1 presents the comparison of precision between the proposed approach and the state-of-248 

the-art solutions in the literature. The reference data is collected from the literature (Li et al., 249 

2016), consisting of post-sensing time synchronization with linear and nonlinear regressions. It 250 

should be noted that, the difference of precision may be due to both hardware and approaches. 251 

It demonstrates that the proposed two-point two-stage effective time synchronization can 252 

achieve a time synchronization error of less than 15 µs, which is sufficiently precise for the 253 

SHM applications in this study.   254 

 255 

Fig. 2. The proposed time synchronization: clock synchronization illustration 256 

Table 1. Comparison of time synchronization errors 257 

Sensing 
duration 

Pairwise synchronization error (mean value, µs) 
Post-sensing time synch 
with linear regression 

Post-sensing time synch 
with nonlinear regression 

The proposed  
approach 

1min 18.63 18.26 7.46 
10min 18.33 17.86 6.44 
30min 17.63 13.27 11.48 

 258 

4 NUMERICAL VALIDATIONS 259 

This section considers three examples as numerical validation of the approach for linear 260 

and nonlinear buildings subjected to different excitations. In real applications, nonlinear 261 
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behavior, such as yielding or nonlinear restoring forces, is expected in building components, 262 

and therefore, the examples show the performance of the proposed method in linear buildings, 263 

nonlinear hysteretic buildings, and linear building with nonlinear protection devices. 264 

4.1 Linear 9-story building 265 

In this section, a benchmark example is considered, where a 9-story linear shear building 266 

is modeled subjected to ground motions (Xu et al, 2017), to numerically evaluate the accuracy 267 

of the method. In particular, the mass is 505×103 kg for the first floor, 495×103 kg for the second 268 

to eighth floors, and 535×103 kg for the roof, respectively. The stiffnesses is 600, 578, 544, 502, 269 

453, 397, 332, 256, and 162 MN/m for the first to the last floor, respectively. The modal 270 

damping ratio is 2% for all the modes. Regarding the excitations, we consider two different 271 

ground motions, including El Centro (EC) earthquake record, and an artificial earthquake which 272 

is processed by the non-stationary Kanai-Tajimi (NSKT) model (Xu et al, 2017) with the 273 

properties including g 12ω =  rad/s, g 0.3ζ = , 0 0.02S =  m2/s3, and ( ) ( )0.1 0.24 t te t e e− −= − . 274 

The numerical model is built and executed with a sampling rate of 1000 Hz in MATLAB 275 

Simulink, and the collected response datasets are then down-sampled to the frequency of 100 276 

Hz to match the popular sampling rate of wireless smart sensors (e.g., Xnodes). All interstory 277 

drifts are computed for comparison purposes. All floor accelerations and base acceleration are 278 

measured. To make it more realistic, datasets are added with a zero-mean Gaussian noise, where 279 
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standard deviation is equal to 5% of the maximum RMS acceleration. this noise magnitude has 280 

been chosen based on similar previous studies (Park et al., 2018; Gomez et al., 2019). 281 

We use the proposed method to estimate the dynamic interstory drift in all floors using the 282 

relative accelerations, using the following parameters: s 100f = Hz, 4n = , 0.8Tf = Hz, 283 

0.99Tα = , and w 5.223N = . The total interstory drift is considered as a reference for 284 

comparison, this is because in the measurements, the pseudo-static components are very small 285 

and no need to extract the dynamic counterparts. Fig. 3 and 4 show the interstory drifts of floors 286 

1 and 6 subjected to ground motions EC and NSKT, respectively. These figures demonstrate 287 

that the obtained drifts match well with the exact values for all time steps.  288 

 289 

Fig. 3. Comparison of interstory drifts under EC ground motion: (a) first story and (b) sixth story 290 

 291 

 292 
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 293 

Fig. 4. Comparison of interstory drifts under NSKT ground motion: (a) first story and (b) sixth story 294 

 295 

In particular, two types of error metrics are obtained to assess the accuracy of the proposed 296 

method: the amplitude error and the RMS error. The amplitude error is given as the difference 297 

between the maximum estimated value and the maximum exact value divided by the maximum 298 

exact value. In earthquake engineering, the maximum interstory drift is one of the most 299 

important metrics (Bennett and Batroney, 1997). The magnitude of the amplitude error 300 

represents an important metric in the accuracy of the maximum interstory drift. The RMS error 301 

is defined by the root-mean-square of the difference between the estimated value and the exact 302 

value divided by the maximum exact value. Table 2 lists both types of errors under the two 303 

excitations. It demonstrates that the errors are relatively small although introducing relatively 304 

large Gaussian noise. It is also observed that, the estimations under the NSKT ground motion 305 

have larger errors than those under EC, which can be explained as the largest response occurs 306 
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in one floor but all records are polluted using the Gaussian noise with the same amplitude using 307 

only the RMS of the maximum response. In the experiments, the measurement noise in 308 

acceleration measurements should be smaller than assumed values in the numerical examples.  309 

Table 2. Estimation errors of dynamic interstory drifts in the linear 9-story building 310 

Story 
El Centro Non-stationary Kanai-Tajimi 

Amplitude Error 
(%) 

RMS Error 
(%) 

Amplitude Error 
(%) 

RMS Error 
(%) 

1 4.89 3.42 1.26 6.17 
2 2.03 3.75 6.30 6.98 
3 4.77 4.30 2.36 7.99 
4 4.73 3.47 1.37 9.59 
5 1.43 4.29 1.60 8.37 
6 1.17 3.31 6.08 6.94 
7 1.02 2.83 7.04 4.46 
8 5.38 2.89 2.82 4.30 
9 0.79 2.87 5.97 3.22 

 311 

As discussed in Section 1, measurements from different wireless smart sensors have time 312 

lags between them. Now, to assess the effect of this issue in the estimation, a time lag of 10 313 

milliseconds is introduced in the acceleration record of the sixth floor. Clearly, this change will 314 

greatly affect the interstory drift of the sixth and seventh floor. 315 

Fig. 5 shows the comparison of the interstory drift for 6th floor for both ground motions. 316 

The estimated and exact values do not agree as well as before. The time lag in the data harms 317 

the accuracy of the method. Smaller time lags need to be assured to achieve good results as 318 

before. 319 
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 320 

Fig. 5. Comparison of interstory drifts for sixth story with a time lag of 10 ms: (a) EC and (b) NSKT 321 

ground motions 322 

 323 

Table 3 shows the amplitude and RMS error for both excitations. The amplitude errors are 324 

slightly larger but do not change much from the previous case. However, the RMS error is 325 

considerably amplified because the time lag not only affects the amplitude but also introduces 326 

a lag between the estimation and exact measurements. In sum, a strategy to limit time lags in 327 

data from different wireless sensors is needed to achieve good accuracy in the drift estimation. 328 

 329 

Table 3. Estimation errors with a time lag of 10 milliseconds at sixth floor acceleration  330 

Story 
El Centro Non-stationary Kanai-Tajimi 

Amplitude Error (%) RMS Error 
(%) 

Amplitude Error 
(%) 

RMS Error 
(%) 

6 1.64 13.13 5.53 15.44 
7 10.64 12.14 11.03 8.09 

 331 
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4.2 Nonlinear 3-story building 332 

A 3-story nonlinear hysteretic shear building is applied in this section to test the accuracy 333 

of the method, subjected to ground motions (Xu et al, 2017). The mass of each floor is 6000 334 

kg. The linear stiffnesses for the first to the last floor are 2.178, 1.772, and 1.2969 MN/m, 335 

respectively. The damping ratios are assumed to be 1.6%, 1.7%, and 2.7% for each mode. Each 336 

floor is considered as an elastoplastic element with smooth transition using Bouc-Wen 337 

hysteretic behavior; typical parameters are assumed for each floor: 338 

0.5, 1, 1, 0.04, 0.01yA n dγ β α= = = = = = . Two ground motions are considered: El Centro 339 

(EC) earthquake record scaled to 20% and with no scaling; for larger amplitudes of the record, 340 

the response should have a larger nonlinear component. The excitation, Simulink simulation, 341 

and data post-processing are the same as those set in Section 4.1.  342 

In this case, the elastoplastic behavior implies residual deformation due to yielding in the 343 

system and this phenomenon introduces pseudo-static displacements; this phenomenon 344 

increases as the amplitude of the excitation is increased. Therefore, the dynamic interstory drift 345 

is extracted from the measured total interstory drift to provide a comparison with the estimated 346 

interstory drift. Fig. 6 shows the total and dynamic interstory drifts of the first story for both 347 

excitations. It should be clarified that, for strong earthquakes, the response is expected to consist 348 

of large residual deformations; however, the dynamic interstory drift is still considered useful 349 

for rapid condition assessment of buildings (Fu et al, 2021b). Other types of nonlinear behavior 350 
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such as components with nonlinear restoring forces do not introduce residual deformations and 351 

the total interstory drift can be recovered with the proposed method; this case is presented in 352 

the next subsection. 353 

The proposed method is applied to estimate dynamic interstory drifts using measured 354 

accelerations, and it considers the following parameters: s 100f = Hz, 4n = , 1.2Tf = Hz, 355 

0.99Tα = , and w 5.223N = . Fig. 7 and 8 show the comparison of the dynamic interstory drift 356 

for floors 1 and 2 and for both excitations. As these figures show, the estimated interstory drift 357 

agrees well with exact dynamic interstory drift for all time steps. Table 4 shows the amplitude 358 

and RMS errors of interstory drift estimation for both excitations. As can be seen in the figure, 359 

the errors between the estimated and the exact dynamic interstory drifts are relatively small.  360 

 361 

Fig. 6. Total and dynamic interstory drifts of the first story with EC (a) scaled to 20% and (b) unscaled 362 
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 363 

Fig. 7. Comparison of interstory drifts with EC scaled to 20%: (a) first and (b) second story 364 

 365 

Fig. 8. Comparison of interstory drifts with EC unscaled: (a) first and (b) second story 366 

Table 4. Estimation errors of dynamic interstory drifts in the nonlinear 3-story building 367 

Story 
El Centro 20% El Centro 100% 

Amplitude Error (%) RMS Error 
(%) 

Amplitude Error 
(%) 

RMS Error 
(%) 

1 2.40 1.31 3.79 2.56 
2 0.05 1.44 3.01 2.11 
3 1.12 1.74 0.90 3.12 

 368 

To study the effect of nonlinear effects on the accuracy of the proposed method for total 369 

interstory drifts, the analysis was performed for different scalings of El Centro. The magnitude 370 
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error and RMS error for the different scaling are shown in Fig. 9. Both types of errors increase 371 

as the nonlinear behavior increases. Moreover, unless large nonlinear plastic behavior, which 372 

achieves residual deformations, is expected to occur, the error in the estimated interstory drift 373 

with respect to the total interstory drift is reasonable.  374 

 375 

Fig. 9. Comparison of errors for the total interstory drifts of the first floor for different levels of EC 376 

 377 

4.3 Linear 2-story building with a nonlinear energy sink 378 

Buildings with seismic protective devices such as nonlinear dampers or isolators typically 379 

have a nonlinear behavior with limited pseudo-static residual deformations, and interstory drift 380 

measurement of these nonlinear systems is of interest as well. This example is representative 381 

of buildings with non -linear protection devices. A 2-story linear shear building with a nonlinear 382 

energy sink (NES) on the roof subjected to ground motions (Gomez et al, 2021) is considered 383 
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as an example of these systems. In this case, the device stroke, which is the relative 384 

displacement of the floor and the device, is also a response of interest. 385 

The masses of the floors are 24.3 and 24.2 kg. The linear stiffnesses are 6820 and 8220 386 

N/m. The damping ratios are assumed to be 0.1% for the two modes of the uncontrolled 387 

structure. The NES in the roof is a Duffing oscillator without a linear term with mass equal to 388 

6.81% of the total mass, linear damping force with constant 3.57 N-s/m, and the coefficient 389 

363.97 mNα
−= [34]. Two ground motions are considered: EC earthquake record and NSKT 390 

model with the following properties: g 20.3ω =  rad/s, g 0.32ζ = , 0 0.026S =  m2/s3, and 391 

( ) ( )0.1 0.24 t te t e e− −= −  (Gomez et al, 2021). Due to the essential nonlinearity in the NES, the 392 

system always has a nonlinear behavior. The excitation, Simulink simulation, and data post-393 

processing are the same with those set in Section 4.1. 394 

The proposed method is applied to estimate dynamic interstory drifts from measured 395 

accelerations with the following parameters: s 100f = Hz, 4n = , 1.0Tf = Hz, 0.99Tα = , 396 

and w 5.223N = . The total interstory drift is considered as a reference for comparison, this is 397 

because in the measurements, the pseudo-static components are very small and no need to 398 

extract the dynamic counterparts. Fig. 10 and 11 show the comparison of the interstory drift for 399 

the first floor and device stroke subjected to ground motions EC and NSKT, respectively. It can 400 

be demonstrated that the estimated drifts agree well with the exact values. Table 5 shows both 401 
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types of errors for both excitations. It demonstrates that the errors are relatively small although 402 

relatively large Gaussian noise are introduced.  403 

 404 

Fig. 10. Comparison with EC for (a) interstory drift of first floor and (b) device stroke 405 

 406 

Fig. 11. Comparison with NSKT for (a) interstory drift of first floor and (b) device stroke 407 

Table 5. Estimation errors of the dynamic interstory drifts in the linear 2-story building 408 

Story 
El Centro Non-stationary Kanai-Tajimi 

Amplitude Error (%) RMS Error 
(%) 

Amplitude Error 
(%) 

RMS Error 
(%) 

1 2.43 2.34 4.86 2.25 
2 0.82 5.71 1.87 3.79 

NES 1.78 5.87 1.57 3.51 
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5. LABORATORY VALIDATION 409 

This section presents a laboratory validation of the proposed method. First, the 410 

experimental setup is described. Then, the results and their discussion are presented. 411 

5.1 Experimental setup 412 

A 6-story planar steel frame was excited using a uniaxial shaking table; based on traditional 413 

system identification methods, the first frequencies of the frame were 1.63 Hz and 5.13 Hz, and 414 

first modal damping ratios are 3.9% and 1.9%. The absolute accelerations were measured using 415 

3 smart wireless sensors Xnodes at floors 4, 5, and 6; the data acquisition was set to 100 Hz. 416 

Vision-based measurements were also obtained to extract displacements and used as a reference 417 

for comparison. Specifically, a checkerboard pattern was attached to each sensor, visible to the 418 

camera and acting as target for tracking. Due to limited size of the pattern (smaller than 4-by-419 

4), the MATLAB toolbox which was used to detect and track the checkerboard pattern was not 420 

applicable (Calibrator, 2019). Thus, a simple pattern matching using 2-dimensional cross-421 

correlation was used on each frame to track the displacement of each floor in pixel unit. Then 422 

the measurement was converted to mm given the size of each square of the checkerboard pattern 423 

was 20 mm x 20 mm. Nikon D3300 camera with the lens of 18-55mm was used, and data 424 

acquisition was set to 60 frames-per-second for video recording. Fig. 12 shows the test setup. 425 
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Three ground motion records with different dynamic properties were considered as the 426 

motion of the shaking table to excite the structure: El Centro 1940, Northridge 1994, and Kobe 427 

1995. 428 

 429 

Fig. 12. Experimental setup 430 

 431 

5.2 Results and Discussion 432 

The proposed dynamic interstory drift estimation method is applied to the measured 433 

accelerations, and it considers the following parameters: s 100f = Hz, 4n = , 1.2Tf = Hz, 434 

0.99Tα = , and w 5.223N = . The total interstory drift is considered as a reference for 435 

comparison, this is because in the measurements, the pseudo-static components are very small 436 

and no need to extract the dynamic counterparts. Fig. 13a-c show the comparison of a time-437 

window of the dynamic interstory drift estimation for floor 5 against the camera-based 438 
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measurement subjected to all ground motions. It can be demonstrated that the estimated values 439 

and the exact values match well for all time steps.  440 

 441 

Fig. 13. Comparison of interstory drifts for 5th story (a) El Centro, (b) Northridge, and (c) Kobe 442 

earthquakes 443 

 444 

The results of the experimental validation for all cases indicate that the proposed interstory 445 

drift estimation, such that the maximum magnitude error is smaller than 5.5% for all cases. 446 

Table 6 shows the errors in the proposed method compared to camera-based measurements. It 447 

is worth noting that the comparison is done against the total interstory drift because the pseudo-448 

static component is negligible. It is concluded that the method is adequate for interstory drift 449 
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estimation in both amplitude and phase. Currently, many building structures include nonlinear 450 

protection devices. As the nonlinearities occur at the discrete locations, where these devices are 451 

located, the proposed approach also works well for estimating total interstory drifts in these 452 

structures. 453 

Table 6. Estimation errors of the dynamic interstory drifts for laboratory validation 454 

Excitation Story Amplitude Error (%) 

El Centro 5 4.46 
6 5.10 

Northridge 5 5.42 
6 4.74 

Kobe 5 5.31 
6 4.24 

 455 

 456 

6. CONCLUSIONS 457 

This paper proposes a new method to estimate dynamic interstory drifts in buildings using 458 

measured accelerations from smart wireless sensors. The method uses an effective FIR filter 459 

that is suited to better suppress low-frequency noise with small ripple in the passband, based on 460 

a minimization problem with Tikhonov regularization. This method then makes use of the 461 

difference of the measured acceleration from different floors, which requires the measurements 462 

to be time-synchronized. Dynamic interstory drift estimation using acceleration measurements 463 

has the potential to be implemented by leveraging WSS. But time synchronization must be 464 

addressed first between WSS nodes. A two-point two-stage method to efficiently perform time 465 

synchronization of multiple WSS is presented to reduce the errors to exceptionally small values. 466 



30 

 

The proposed method was demonstrated and evaluated via numerical simulations of both linear 467 

and nonlinear hysteretic buildings subjected to ground motions, and subsequently demonstrated 468 

in laboratory tests of a small-scale steel frame subjected to different earthquake records. Both 469 

numerical and lab test results demonstrate that the proposed method provides a very accurate 470 

estimation of the dynamic interstory drifts of buildings.  471 

Future work in this topic will consist in improving the filter by making the window of the 472 

filter shorter, such that the lag between the measurement and prediction becomes smaller and 473 

implementation is more efficient as fewer arithmetic operations are needed in the WSS. 474 

Additionally, the filter will be studied to include an estimation of the pseudo-static interstory 475 

drifts in nonlinear structures. Experiments on large-scale buildings will be conducted.  476 

DATA AVAILABILITY STATEMENT 477 

Some data, models, and code that support the findings of this study are available from the 478 

corresponding author upon reasonable request. 479 

ACKNOWLEDGEMENTS 480 

The authors want to gratefully acknowledge FRA for the financial support of this research under 481 

contract DTFR53-17-C-00007, and ZJU-UIUC Institute Research under Grant #ZJU083650, 482 

NTU Start-up Grant 021323-00001, MOE AcRF Tier 1 RG121/21. 483 

 484 



31 

 

 485 

REFERENCES 486 

Abé, M. and Fujino, Y. 2017. “Displacement based monitoring of civil structures.” 13th 487 
International Workshop on Advanced Smart Materials and Smart Structures Technology, 488 
Japan. 489 

Bennett, K.D. and Batroney, C.B. 1997. “Interstory drift monitoring in smart buildings using 490 
laser crosshair projection.” Optical Engineering, 36(7). https://doi.org/10.1117/1.601396  491 

Bocca, M., and Eriksson, L.M. 2011. “A synchronized wireless sensor network for experimental 492 
modal analysis in structural health monitoring.” Computer-Aided Civil and Infrastructure 493 
Engineering, 26, 483–499. https://doi.org/10.1111/j.1467-8667.2011.00718.x  494 

Calibrator, C. 2019. “Detect checkerboard pattern in image - MATLAB 495 
detectCheckerboardPoints.” [online] Mathworks.com. Available at: 496 
https://www.mathworks.com/help/vision/ref/detectcheckerboardpoints.html [Accessed 4 497 
Jan. 2019].  498 

Fu, Y., Hoang, T., Mechitov, K., Kim, J.R., Zhang, D., and Spencer Jr, B. F. 2021a. “xShake: 499 
Intelligent wireless system for cost-effective real-time seismic monitoring of civil 500 
infrastructure.” Smart Structures and Systems, 28(4), 483-497.  501 
https://doi.org/10.12989/sss.2021.28.4.483  502 

Fu, Y., Mechitov, K., Hoang, T., Kim, J.R, Lee, D.H., and Spencer, Jr., B.F. 2019. “Development 503 
and full-scale validation of high-fidelity data acquisition on a next-generation wireless smart 504 
sensor platform.” Advances in Structural Engineering, 22(16), 3512-33. 505 
https://doi.org/10.1177/1369433219866093  506 

Fu, Y., Mechitov, K., Hoang, T., Kim, J.R., Memon, S.A., and Spencer, Jr., B.F. 2021b. 507 
“Efficient and high‐precision time synchronization for wireless monitoring of civil 508 
infrastructure subjected to sudden events.” Structural Control and Health Monitoring, 28(1), 509 
e2643. https://doi.org/10.1002/stc.2643  510 

Fu, Y., Mechitov, K.A., Hoskere, V., and Spencer, Jr., B.F. 2016. “Development of RTOS-based 511 
wireless SHM system: benefits in applications.” International Conference on Smart 512 
Infrastructure and Construction, Cambridge, UK, June 27-29. 513 

Fu, Y., Zhu, L., Hoang, T., Mechitov, K. and Spencer Jr, B.F., 2018. “Demand-based wireless 514 
smart sensors for earthquake monitoring of civil infrastructure.” In Sensors and Smart 515 
Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018 (10598, 245-516 
251). SPIE.  517 

Gindy, M., Vaccaro, R., Nassif, H., and Velde, J. 2008. “A state-space approach for deriving 518 
bridge displacement from acceleration.” Computer-Aided Civil and Infrastructure 519 
Engineering, 23(4), 281-290. https://doi.org/10.1111/j.1467-8667.2007.00536.x  520 

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank


32 

 

Gomez, F., Fermandois, G.A. and Spencer Jr, B.F., 2021. “Optimal design of nonlinear energy 521 
sinks for mitigation of seismic response on structural systems.” Engineering Structures, 232, 522 
111756. https://doi.org/10.1016/j.engstruct.2020.111756  523 

Gomez, F., Park, J.W., and Spencer, B.F. Jr. 2018. “Reference-free structural dynamic 524 
displacement estimation method.” Structural Control and Health Monitoring, 25, e2209. 525 
https://doi.org/10.1002/stc.2209   526 

Hester, D., Browjohn, J., Bocian, M., and Xu, Y. 2017. “Low cost bridge load test: calculating 527 
bridge displacement from acceleration for load assessment calculations.” Engineering 528 
Structures, 143, 358-374.  529 
https://doi.org/10.1016/j.engstruct.2017.04.021  530 

Hong, Y.H., Kim, H.K., and Lee, H.S. 2010. “Reconstruction of dynamic displacement and 531 
velocity from measured accelerations using the variational statement of an inverse problem.” 532 
Journal of Sound and Vibration. 329(23), 4980‐5003.  533 
https://doi.org.remotexs.ntu.edu.sg/10.1016/j.jsv.2010.05.016  534 

Islam MN, Zareie S, Alam MS, and Seethaler RJ. 2016. “Novel method for interstory drift 535 
measurement of building frames using laser-displacement sensors.” Journal of Structural 536 
Engineering, 142(6), 06016001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001471  537 

Jo, H., Sim, S.H., Nagayama, T., and Spencer Jr., B.F. 2011. “Development and application of 538 
high-sensitivity wireless smart sensors for decentralized stochastic modal identification.” 539 
Journal of Engineering Mechanics, 138(6), 683-694.  540 
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000352  541 

Kim, J., Kim, K., and Sohn, H. 2014. “Autonomous dynamic displacement estimation from 542 
data fusion of acceleration and intermittent displacement measurements.” Mechanical 543 
Systems and Signal Processing, 42(1-2), 194-205. 544 
https://doi.org/10.1016/j.ymssp.2013.09.014  545 

Kim, J., Swartz, A., Lynch, J.P., Lee, J.J., and Lee, C.G. 2010. “Rapid-to-deploy reconfigurable 546 
wireless structural monitoring systems using extended-range wireless sensors.” Smart 547 
Structures and Systems, 6(5-6), 505-524. https://doi.org/10.12989/sss.2010.6.5_6.505  548 

Kim, K., Choi, J., Chung, J., Koo, G., Bae, I.H., and Sohn, H. 2018. “Structural displacement 549 
estimation through multi-rate fusion of accelerometer and RTK-GPS displacement and 550 
velocity measurements.” Measurement, 130, 223-35. 551 
https://doi.org.remotexs.ntu.edu.sg/10.1016/j.measurement.2018.07.090  552 

Kim, K. and Sohn, H. 2017. “Dynamic displacement estimation by fusing LDV and LiDAR 553 
measurements via smoothing based Kalman filtering.” Mechanical Systems and Signal 554 
Processing, 82(1), 339-355.  555 
https://doi.org/10.1016/j.ymssp.2016.05.027  556 

Lee, H.S., Hong, Y.H., and Park, H.W. 2010. “Design of an FIR filter for the displacement 557 
reconstruction using measured acceleration in low‐frequency dominant structures.” 558 

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank


33 

 

International Journal for Numerical Methods in Engineering. 82(4), 403‐434. 559 
https://doi.org/10.1002/nme.2769  560 

Lee, J., Lee, K.C., Jeong, S., Lee, Y.J., and Sim, S.H. 2020. “Long-term displacement 561 
measurement of full-scale bridges using camera ego-motion compensation.” Mechanical 562 
Systems and Signal Processing, 140, 106651.  563 
https://doi.org/10.1016/j.ymssp.2020.106651  564 

Liu, C., Park, J.W, Spencer, B.F. Jr., Moon, D.S. and Fan, J. 2017. “Sensor fusion for structural 565 
tilt estimation using an acceleration-based tilt sensor and a gyroscope.” Smart Materials and 566 
Structure, 26(10), 105005. https://doi.org/10.1088/1361-665X/aa84a0  567 

Li, J., Mechitov, K.A., Kim, R.E., and Spencer, Jr. B.F. (2016). “Efficient time synchronization 568 
for structural health monitoring using wireless smart sensor networks”, Structural 569 
Control and Health Monitoring. 23(3), 470-486. https://doi.org/10.1002/stc.1782  570 

Luo, L. and Feng, M.Q. 2018. “Edge‐enhanced matching for gradient‐based computer vision 571 
displacement measurement.” Computer‐Aided Civil and Infrastructure Engineering, 33(12), 572 
1019-40. https://doi.org/10.1111/mice.12415  573 

Lynch, J.P., and Loh, K.J. 2006. “A summary review of wireless sensors and sensor networks 574 
for structural health monitoring.” Shock and Vibration Digest, 38(2), 91-130.  575 
https://doi.org/10.1177/0583102406061499  576 

Nagayama, T., and Spencer Jr, B.F. 2007. “Structural health monitoring using smart sensors.” 577 
Newmark Structural Engineering Laboratory. University of Illinois at Urbana-Champaign.  578 

Nagayama, T., Suzuki, M., Zhang, C., and Su, D. 2017. “High-accuracy wireless sensor 579 
development and its application to deflection estimation of a steel box girder bridge.” 13th 580 
International Workshop on Advanced Smart Materials and Smart Structures Technology, 581 
Japan.  582 

Pan, H., Yuen, K.V, and Kusunoki, K. 2021. “Displacement estimation for nonlinear structures 583 
using seismic acceleration response data.” Journal of Earthquake Engineering, 11, 1-9. 584 
https://doi.org/10.1080/13632469.2021.1997838  585 

Park, J.W., Moon, D.S., Yoon, H., Gomez, F., Spencer, B.F. Jr., and Kim, J.R. 2018. “Visual–586 
inertial displacement sensing using data fusion of vision‐based displacement with 587 
acceleration.” Structural Control and Health Monitoring, 25, e2122. 588 
https://doi.org/10.1002/stc.2122  589 

Park, J.W., Sim, S.H., and Jung, H.J. 2013. “Displacement estimation using multimetric data 590 
fusion.” IEEE/ASME Transactions On Mechatronics, 18(6), 1675-82. 591 
https://doi.org/10.1109/TMECH.2013.2275187 592 

Rawat, P., Singh, K.D., Chaouchi, H., and Bonnin, J.M. 2014. “Wireless sensor networks: a 593 
survey on recent developments and potential synergies.” The Journal of supercomputing, 594 
68(1), 1-48. https://doi.org/10.1007/s11227-013-1021-9    595 

Rice, J.A., Mechitov, K., Sim, S.H., Nagayama, T., Jang, S., Kim, R., Spencer Jr, B.F., Agha, 596 

about:blank
about:blank
about:blank
https://doi.org/10.1002/stc.1782
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank


34 

 

G., and Fujino, Y. 2010. “Flexible smart sensor framework for autonomous structural health 597 
monitoring.” Smart Structures and Systems, 6(5-6), 423-438.  598 
https://doi.org/10.12989/sss.2010.6.5_6.423  599 

Rice, J.A., Mechitov, K. A., Sim, S.H., Spencer Jr, B.F., and Agha, G.A. 2011. “Enabling 600 
framework for structural health monitoring using smart sensors.” Structural Control and 601 
Health Monitoring, 18(5), 574-587. https://doi.org/10.1002/stc.386  602 

Skolnik, D.A. and Wallace J.W. 2010. “Critical assessment of interstory drift measurements.” 603 
Journal of Structural Engineering, 136(12), 1574-1584.  604 
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000255    605 

Spencer, Jr., B.F., Park, J.W., Mechitov, K.A, Jo, H., and Agha, G. 2017. “Next generation 606 
wireless smart sensors toward sustainable civil infrastructure.” Procedia engineering, 171, 607 
5-13. https://doi.org./10.1016/j.proeng.2017.01.304   608 

Wang, Y., Lynch, J.P., and Law, K.H. 2007. “A wireless structural health monitoring system 609 
with multithreaded sensing devices: design and validation.” Structure and Infrastructure 610 
Engineering, 3(2), 103-120. https://doi.org/10.1080/15732470600590820   611 

Xu, J., Spencer, B.F. Jr., and Lu, X. 2017. “Performance-based optimization of nonlinear 612 
structures subject to stochastic dynamic loading.” Engineering Structures, 134, 334-345. 613 
https://doi.org/10.1016/j.engstruct.2016.12.051  614 

Xu, J., Spencer, B.F. Jr., Lu, X., Chen, X., and Lu, L. 2017. “Optimization of structures subject 615 
to stochastic dynamic loading.” Computer-Aided Civil and Infrastructure Engineering, 32(8), 616 
657-673. https://doi.org/10.1111/mice.12274  617 

Zheng, W., Dan, D., Cheng, W., and Xia, Y. 2019. “Real-time dynamic displacement monitoring 618 
with double integration of acceleration based on recursive least squares method.” 619 
Measurement, 141, 460-71.  620 
https://doi.org/10.1016/j.measurement.2019.04.053  621 

Zhu, H., Gao, K., Xia, Y., Gao, F., Weng, S., Sun, Y., and Hu, Q. 2020. “Multi-rate data fusion 622 
for dynamic displacement measurement of beam-like supertall structures using acceleration 623 
and strain sensors.” Structural Health Monitoring, 19(2), 520-36. 624 
https://doi.org/10.1177/1475921719857043  625 

 626 
 627 
 628 
 629 
 630 
 631 
 632 
 633 
 634 

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

	Title: Estimation of Dynamic Interstory Drift in Buildings using Wireless Smart Sensors
	1. INTRODUCTION
	2. DYNAMIC INTERSTORY DRIFT ESTIMATION FROM ACCELERATION RECORDS
	2.1 Displacement estimation formulation
	2.2 FIR filter for interstory drift estimation

	3. WIRELESS SMART SENSORS AND TIME SYNCHRONIZATION
	3.1 High-fidelity sensor platform
	3.2 Two-point two-stage time synchronization for interstory drift estimation

	4 Numerical validations
	4.1 Linear 9-story building
	4.2 Nonlinear 3-story building
	4.3 Linear 2-story building with a nonlinear energy sink

	5. LABORATORY VALIDATION
	5.1 Experimental setup
	5.2 Results and Discussion

	6. CONCLUSIONS
	DATA AVAILABILITY STATEMENT
	ACKNOWLEDGEMENTS
	REFERENCES



