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Abstract 

Wireless Smart Sensor Networks (WSSN) have seen significant advancements in recent years. 

They act as a core part of structural health monitoring (SHM) systems by facilitating efficient 

measurement, assessment, and hence maintenance of civil infrastructure. This paper presents 

the latest technology developments of WSSN in the last ten years, including ones for a single 

sensor node and those for a network of nodes. Focus is placed on critical aspects of such 

advancements, including event-triggered sensing, multimeric sensing, edge/cloud computing, 

time synchronization, real-time data acquisition, decentralized data processing, and long-term 

reliability. In addition, full-scale applications and demonstrations of WSSN in SHM are also 

summarized. Finally, the remaining challenges and future research directions of WSSN are 

discussed to promote the further development and applications. 

Keywords: Structure health monitoring, Wireless sensor networks, Edge and cloud computing, 

Time synchronization, Full-scale application 

 

1. Introduction  

Deterioration and damage of civil infrastructure such as high-rise buildings and bridges pose 

potentially significant risk to public safety as they can lead to catastrophic hazard such as 

collapses. Through continuous monitoring, the purpose of SHM is to keep track of structural 

integrity by assessing structural performance under different loads and identifying any damage 

or deterioration for a better understanding of its overall conditions. Eventually, SHM helps to 

prevent catastrophic failures. It can potentially extend the service life of existing structures, 

significantly reduce maintenance costs and enhance public safety. Wireless smart sensors (WSS) 

are one of the cornerstones for building efficient SHM systems. Over the past decades, WSS 

has undergone significant development, and wireless smart sensor networks (WSSN) have been 

widely deployed for SHM (Lynch et al., 2006). Compared with its wired counterparts, WSSN 

has several advantages, such as ease of installation and low cost (Sofi et al., 2022). There is no 

need to deploy complex cables, no cable protection work, and on-board data conditioners can 

eliminate expensive stand-alone demodulators, not only simple and time-saving but 

significantly reducing costs. The sensors in the WSSN-based SHM system are untethered and 

communicate wirelessly, which makes it easy to update, add, move, and replace sensors. The 

network can be quickly reassembled without interfering with the original data acquisition 
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operation. Accordingly, there is a growing trend to replace the wired sensors with WSSN (Zhou 

& Yi, 2013). Several state-of-the-art wireless sensors include Martlet (Kane et al., 2014), Xnode 

(Spencer et al., 2017), Waspmote (Libelium, 2016), G-Link-200 (Microstrain, 2017), and so on.  

This article introduces the recent advances of WSSN in SHM in the last ten years (i.e., 2012-

2022). In details, the development of several key functionalities in both a single node and a 

network of nodes are introduced in Section 2. Section 3 summarizes the full-scale applications 

and performance evaluations of wireless sensors in real structures. Section 4 discusses several 

critical challenges and future studies. Section 5 is a summary of this paper including recent 

advances of WSS and WSSN and existing limitations and future expectations.  

 

2. Wireless Smart Sensors in Structure Health Monitoring 

This section presents the summary of advancements for wireless smart sensors, with respect to 

a single sensor node in Section 2.1 and a network of sensor nodes in Section 2.2.  

2.1 Advances of key functionalities in wireless smart sensors 

Wireless smart sensors typically have three or four functional subsystems: sensing interface, 

computing core, wireless radio, and actuation interface (for some smart sensor platforms). 

Deploying a single wireless smart sensor comes with its own set of challenges. The most critical 

one is the constraints in resources in such edge devices. For example, one major obstacle is the 

limited battery power. To address the challenge, event-triggered sensing is one of the promising 

solutions. Meanwhile, some advances have been made to expand the functionalities of 

traditional WSS, such as multimeric sensing and edge computing. We will discuss the advances 

of these functionalities in the following subsections, as shown in Fig.1. 

 

Fig.1 Advances of key functionalities in wireless smart sensors 

2.1.1 Event-triggered sensing  

Event-triggered sensing is a promising solution for long-term large-scale monitoring systems 

needed in civil infrastructure, which often face the challenge of power constraints for the 

deployment of WSS operating on battery power. To address this issue, strategies encompass 

the optimization of sensor dormancy periods and the schemes focused on duty cycling 

utilization. Event-triggered sensing and schedule-based sensing are two main mechanisms for 

wireless data acquisition aimed at enhancing energy efficiency in long-term deployment. 



Popovic et al. (2017) proposed an event-driven wireless sensor network for monitoring railroad 

infrastructure. Sentinel nodes and monitoring nodes were positioned on the tracks to detect train 

events and sense strain and then went back to sleeping mode, which extended the monitoring 

nodes' battery life to several months. Sarwar et al. (2020) introduced a design for an event-

based sensing system that employs an ultra-low-power microcontroller with a customizable 

event-detection mechanism, enabling uninterrupted monitoring during a long-term operation. 

However, both methods face the challenge of missing data due to sensing response latency, 

particularly for transient structural responses. Fu et al. (2018) created a demand-based wireless 

smart sensor that serves as a universal solution, built upon Xnodes. This sensor is equipped 

with a programmable event-based switch that automatically activates and deactivates the high-

fidelity sensor platform to prevent data loss. Lin et al. (2021) developed a technique that enables 

speedy reconstruction of missing data in structural condition monitoring when caused by 

transmission errors and sensor malfunctions. Fu et al. (2022) developed an intelligent wireless 

monitoring system that uses ultra-low-power, event-triggered wireless sensor prototypes to 

enable on-demand, high-fidelity sensing without missing unpredictable impacting events. 

2.1.2 Multimeric sensing 

In SHM systems, single-metric sensing provides limited information, which limits its ability to 

address complex problems, e.g., estimating nonlinear residual structural deformation from 

purely acceleration records. Therefore, multimeric sensing plays a crucial role in providing 

accurate and comprehensive information regarding complex structural behaviors. Multimeric 

sensing involves measuring various factors to gather multimeric data, e.g., acceleration, strain, 

temperature, etc. (2011). It enables comprehensive monitoring of a structure and reduces the 

number of sensors needed. Sarwar (2020) introduced a device that is activated by vibration, 

strain, or a timer and has a designated threshold that leads to the minimal power consumption 

of the sensor node. They expanded on this sensing prototype to make it multimeric event-driven, 

allowing it to be triggered by both vibration and strain. In order to gather more detailed 

structural information, it's important to have a wider range of sensing capabilities available for 

WSSN. This can be achieved through a flexible sensing platform that can integrate different 

types of sensors. Interface boards may be necessary to convert physical responses into voltage 

signals, which can then be acquired by the WSSN. Dong et al. (2014) developed the Martlet 

wireless sensing system with an extensible design that allows the incorporation of multiple 

sensor boards, collecting structural response data simultaneously from a set of heterogeneous 

sensors. Additionally, the Xnode sensing platform allows for five external sensing channels, 

allowing for a broader range of capabilities such as capacitance-based sensing skin for crack 

monitoring (Taher et al., 2022) and anemometers for wind hazard monitoring (Shaheen et al., 

2022). 

2.1.3 Edge Computing 

One of the most important parts in WSSs is the onboard central processing unit (Lynch et al., 

2006). This component provides intelligent capabilities like edge computing, which is an 

emerging computing paradigm where computation is conducted at the edge of the network to 

increase efficiency and scalability for rapid data analytics and decision making (Cao et al., 

2020). Edge computing has the potential to convert raw data into valuable information by 



enabling data processing and analysis at the network edge, reducing the workload for WSS, and 

addressing data inundation (Park et al., 2013). Various studies have been conducted to advance 

edge computing, including signal filtering and system identification. By processing data 

onboard, edge computing can improve the performance of wireless sensor nodes. Wireless 

smart sensors with edge computing face a major challenge due to limited resources including 

memory space, power supply, and microprocessor speed. These limitations restrict the 

complexity of applications, particularly real-time ones, as the sensor node can slow down the 

application process or drain batteries quickly. To overcome these obstacles, various hardware, 

software, and algorithmic co-design efforts have been made. For instance, Spencer et al. (2017) 

made significant improvements in Xnodes' computation and concurrent execution capabilities 

on the hardware side. On the software side, Fu et al. (2016) implemented preemptive 

multitasking to enhance the efficiency of managing and consuming limited resources in real 

time. Additionally, Hoang and Spencer (2022) developed a lightweight on-board reference-free 

displacement estimation algorithm that transforms raw acceleration measurement data, which 

is 100,000 times faster than the conventional methods. 

2.2 Advances of key functionalities in wireless smart sensor networks  

After sensing and processing the data within each sensor node,  they deliver the data back to 

the gateway node and further to the end users, which have several challenges for follow-up 

structural health monitoring applications, such as time synchronization, transmission delay, and 

data loss. To address them, various improvements have been introduced to enhance the 

performance of WSSN. Among these studies, significant advancements have been made in the 

techniques of time synchronization, real-time data acquisition, decentralized data processing, 

cloud computing, and long-term reliability of WSSN. We will discuss the advances of these 

functionalities in the following subsections, as shown in Fig.2.  

 

Fig.2  Advances of key functionalities in wireless smart sensor networks 

2.2.1 Time synchronization 

For data collection from wireless sensor nodes with independent clocks, time synchronization 

is crucial. Several protocols such as Time-sync Protocol for Sensor Networks (TPSN), 

Reference Broadcast Synchronization (RBS), and Flooding Time Synchronization Protocol 

(FTSP) have been developed to address this challenge. Although these protocols can help to 

ensure synchronized clocks among WSS, uncertainties in software processing time and low-



quality crystals can still lead to variations in sensing start time and fluctuations in sampling 

rates. Additional challenges are also found due to extended sensing duration and temperature 

variation. These factors can cause synchronization errors in the measurement data, which can 

potentially lead to inaccurate application results, such as system identification and damage 

detection (Krishnamurthy, et al., 2008). Nagayama and Spencer (2007) developed a two-stage 

approach involving linear clock drift compensation and resampling techniques, to achieve data 

synchronization with an impressive accuracy of 30 microseconds (30 μs). Built upon this 

strategy, Li et al. (2016) introduced nonlinear clock drift compensation with two 

implementations to accommodate different radio communication environments. Kim et al. 

(2016) further implemented a low-cost GPS-based strategy in conjunction with the two-stage 

method to realize accurate synchronized sensing for spatially large infrastructure monitoring. 

More recently, by incorporating pre-emptive multitasking and the state-of-the-art real-time 

operation system, Fu et al. (2021) further improved the protocols to achieve sudden 

synchronized event monitoring and real-time synchronized sensing through offline and online 

beacon exchange, respectively. It also presents the comparison between most state-of-the-art 

time synchronization strategies.  

2.2.2 Real-time data acquisition  

Wireless data transmission is generally conducted after sensing is completed, which can be time 

consuming due to potential radio interference and limited bandwidth. It can cause delays in 

subsequent applications, such as real-time data visualizations and structural control (Linderman 

et al., 2013). Accordingly, some efforts are made to acquire data in real-time and eliminate 

transmission delays. Real-time wireless data acquisition faces two primary challenges. Firstly, 

the sensor node needs to sense and transmit data within a sampling interval, which can cause 

scheduling conflicts in event-driven operating systems like TinyOS, commonly used in wireless 

sensors. Secondly, a network of sensor nodes must be able to transmit data lossless to the base 

station concurrently in a given bandwidth, despite the potential radio interference. Traditional 

strategies, however, do not fully address both issues; hence they have limited network 

throughput and are not practical for large-scale sensor networks. To resolve the limitations, 

Linderman et al. (2013) conducted a comprehensive timing analysis of TinyOS executions and 

set reasonable sampling intervals to avoid scheduling conflicts and implemented staggered time 

division multiple access (TDMA) to enable high-throughput real-time data acquisition with a 

throughput of up to 46kbps. Xiao et al. (2017) proposed a Master-Slave scheme to separate the 

sensing and transmission in two processors and improved TDMA to achieve the maximum 

throughput of 86.4 kbps. Fu et al. (2021) implemented pre-emptive multitasking using 

FreeRTOS on Xnodes to resolve scheduling conflicts and developed adaptive TDMA with real-

time time synchronization to increase the network throughput to 115.2 kbps.  

2.2.3 Decentralized data processing  

Decentralized data processing (aka, distributed computing strategy) is an important aspect for 

WSSNs. The associated network is organized as three levels, including leaf nodes, cluster heads, 

and gateway nodes. In each cluster, neighboring sensor nodes work together to process raw 

data, which reduces data transmission and improves the scalability of sensor networks (Sim, 

2011). This concept has been studied for system identification (Sim et al., 2010) and damage 



detection (Jang et al., 2012). Decentralized data processing faces several challenges, especially 

related to network topologies. For example, the resource distribution (e.g., power and memory) 

in the sensor network is possibly nonuniform, and sensor failures may also disturb the 

functionalities of multi-layer networks. In addition, reliable multi-hop communication should 

also be considered, especially for large-scale sensor networks. Therefore, to maintain the high 

performance of decentralized data processing, one should carefully design and reconfigure 

network topology. Long & Büyüköztürk (2020) proposed a power-optimized and 

reprogrammable system. This system can remotely allocate sensor nodes' computational 

operations in a MapReduce-style syntax, ensuring optimal performance of WSSNs. 

Additionally, sensor network topology reconfiguration has been discussed in the context of 

sensor failures (Younis et al., 2014). For multi-hop networks, Gao et al. (2019) have created a 

multi-hop slot segmenting scheduling and multichannel data communication algorithm, which 

ensures high accuracy of synchronous acquisition. Tronci et al. (2022) proposed a low-power 

multi-hop wireless sensor network, incorporating synchronized communication and 

transmission time. In addition, the network utilizes time-division communication, allowing 

wireless devices to enter sleep mode when not actively required to further save power resources.  

2.2.4 Cloud computing  

With the increase of WSSN scale and application complexity, it is highly desired to have cloud 

servers with sufficient resources for large-volume data storage, analytics and management. In 

the field of SHM, researchers have been exploring the use of software-based database 

management systems (DBMS) since the early 2000s (Li et al., 2006) and further towards cloud 

infrastructure for data analytics and visualization (Fraser et al., 2010). However, big data 

analytics enabled by ubiquitous sensing and cloud computing has several challenges, such as 

the lack of a systematic framework and practical computation techniques for long-term and/or 

near-real-time monitoring goals. To address the challenges, Jeong et al (2016) introduced a 

cyberinfrastructure platform for SHM, that incorporates bridge information modelling (BrIM) 

and utilizes a NoSQL database. Chang et al. (2018) built a real-time cloud-based system that 

can receive heterogeneous IoT data, allow users to create a three-dimensional model online as 

the real-world structure, and visualized the monitoring results in that model. Hoang et al (2020) 

implemented time-series and relational databases to manage sensor data of a railroad bridge 

network. Martín et al. (2022) present an Edge/Fog/Cloud architecture for SHM in civil 

infrastructures, enabling high availability and easy distribution of the components over the 

architecture. Furthermore, to improve big data analytics efficiency in SHM, parallel computing 

and machine learning techniques have been increasingly explored recently. For example, 

deployed on the amazon web server, Khazaeli et al (2016) demonstrated the efficiency of 

machine learning algorithms for near-real-time damage detection of a ten-story shear building. 

Dang et al. (2021) present a Digital Twin framework based on cloud computing and deep 

learning that can perform real-time monitoring and proactive maintenance efficiently. The 

feasibility is demonstrated via real bridge structures with accuracy of 92%. 

2.2.5 Long-term reliability 

Long-term reliability in WSSNs refers to the network's ability to maintain consistent and 

precise operation throughout an extended duration, typically in demanding or adverse 



environmental conditions. In some SHM applications, wireless sensor networks are deployed 

in the long term and/or under harsh environments, and the reliability of WSSN is critical. WSSN 

are often susceptible to issues that can affect their reliability and hence compromise their 

functionality in coverage and connectivity (Spencer et al., 2016). Such issues mainly include 

power failures, hardware failures, software failures, and harsh environmental conditions (Mao 

et al., 2021). The reliability of a WSSN can be assessed on node-to-node communication 

performance through link characterization (Robin et al., 2011). To enhance network reliability 

and minimize the occurrence of malfunctions (i.e., sensor failures and sensor faults), advances 

in hardware, software, or signal processing are highly desired. The hardware improvements 

include the optimal design of sensor enclosure layouts (Fu, et al., 2019); the software 

improvements include network power management, self-reconfiguration and self-diagnosis 

(Liang et al., 2015); for signal processing, data anomaly (aka, faulty data) detection and 

diagnosis have attracted a lot of attention in recent years (Peng et al., 2017). Zhang et al. (2020) 

proposed an approach to detect anomalies in time-series status data (e.g., operating voltage and 

panel temperature), named median filter (MF)-stacked long short-term memory-exponentially 

weighted moving average (LSTM-EWMA). Poornima et al. (2020) present an Online Locally 

Weighted Projection Regression (OLWPR) for anomaly detection in WSN. It’s a non-

parametric method and only uses subset data to perform predictions, reducing computation 

complexity. Srivastava et al. (2023) proposed a Hybrid Model of One-class SVM and Isolation 

Forest (HMOI) to flag the anomalous data and its source. The model adopts a 'Classification + 

Classification' framework, enabling the identification of anomalous data instances and the 

subsequent tagging of the associated mote-ids belonging to the sensors exhibiting anomalies 

within the network. 

 

3. Recent Full-scale applications in SHM 

The SHM using WSSN plays a vital role in monitoring critical infrastructure such as bridges, 

high-rise buildings, and stadiums, which holds the significant potential for enhancing public 

safety and extending the lifespan of these structures (Noel et al., 2017). To ensure that WSS 

and WSSN prototypes work effectively in real-world scenarios, they must be demonstrated or 

evaluated on full-scale structures. Even though these devices have been tested in the lab, several 

practical challenges that are different from the lab setting must be carefully addressed, such as 

noise levels, data transmission distance, network topology, and signal interference (Zhou & Yi, 

2013). This section will summarize the full-scale applications of WSSN in recent years and list 

them in Table 1.  

Phanish et al. (2015) developed a WSSN-based SHM platform, which was deployed at Bobby 

Dodd Stadium at Georgia Tech. This platform utilized a testbed to gather real-time data during 

football games and other significant events. By employing this power-efficient, scalable and 

clustered WSN testbed, the system captured real-time data during sports and major gatherings, 

allowing for the evaluation of the stadium's structural behavior and its correlation with spectator 

activities. The sensing devices in the test bench achieved synchronization without relying on 

GPS or beacons, while still ensuring sufficient accuracy for modal analysis. A cognitive radio 



backhaul link was developed to establish the communication between WSSN in the stadium 

and the lab's servers.  

Potenza et al. (2015) conducted permanent seismic monitoring of the historic building Basilica 

S. Maria di Collemaggio using WSSN. This masonry church suffered damage and partial 

collapse during the L'Aquila earthquake. They deployed 16 accelerometer sensors, 8 

extensometers, 3 wall inclinations, and 1 node gateway on the structure. The design, 

deployment, and performance of sensor networks are specifically for the long-term monitoring 

of huge masonry structures in earthquake zones. From the perspective of information 

technology, the paper analyzed the key issues in wireless data acquisition and communication; 

from the perspective of experimental signal analysis, the acceleration data collected during the 

three-year seismic monitoring period were analyzed in the frequency domain and time domain. 

The results revealed the complex interaction between the masonry structure and some 

temporary protective devices.  

Häckell et al. (2016) propose a three-layer algorithmic framework for SHM systems and apply 

it to an operating 3 kW wind turbine, collecting acceleration and environmental and operational 

conditions (EOC) data to explore the modularity of the three-layer framework. The wind turbine 

is installed with six three-axis accelerometers, and six Martlet wireless sensor nodes. In total, 

354 datasets were collected from turbines, including lateral acceleration of the tower in two 

orthogonal directions of six heights, wind speeds, and wind directions; 317 datasets correspond 

to wind turbines in a healthy state and 37 datasets correspond to wind turbines in a damaged 

state. 

Liu et al. (2016) deployed Martlet nodes on an in-service prestressed concrete highway bridge 

on dry creek SR113 in Bartow County, Georgia. During the test, a total of 29 Martlet units are 

deployed and integrated with four types of sensors: accelerometers, strain gauges, strain sensors, 

and magneto strictive displacement sensors, measuring the bridge's response due to traffic and 

environmental excitations. The hammer tests were also carried out and acceleration data was 

collected and analyzed to obtain the modal properties of the bridge. Field test results 

demonstrate the reliability of Martlet's wireless sensing system.  

Using a cable-stayed bridge in Pietratagliata (Italy) as a case study, Baden et al. (2018) 

conducted a comprehensive experimental verification of the developed wireless MEMS 

accelerometer. The study was carried out using ten sensors and was designed to acquire and 

monitor the deformation of the bridge slab. Based on the available MEMS sensors and collected 

measurements, the dynamic parameters of the bridge were estimated by the Structural Modal 

Identification Toolsuite software. MEMS accelerometers in the prototype stage offer a reliable 

way to assess the dynamic characteristics of bridges, demonstrating their potential use in low-

cost and practical applications.  

Fu et al. (2019) conducted the field test of a pedestrian bridge located in Lake Woods in 

Mohammed, Illinois to verify the fidelity of data acquisition using Xnode wireless smart 

sensors. Eight Xnodes were deployed on the bridge, with one serving as a gateway node near 

the dock and connected to a PC. The remaining seven nodes acted as leaf nodes, positioned on 

the bridge to measure dynamics bridge responses. Each test is configured with a measurement 

time of 1 minute, resulting in a collection of 6,000 data points in the longitudinal, horizontal, 



and vertical directions. Modal analysis using wireless sensor data is performed and compared 

with that using wired sensor data. The good match of the results demonstrates the Xnode’s 

performance in terms of high-fidelity data acquisition.  

Hoang et al. (2020) deployed a Xnode-based wireless monitoring system on a on nine timber 

trestle and two steel truss railroad bridges in Marion, Illinois, USA, from December 2018 to 

January 2019. The wireless system recorded 944 datasets that include 419 train crossing events. 

The system was able to maintain the battery power level readings of above 3.5 V leveraging 

solar panels, indicating excellent operating conditions in field tests. The research recorded an 

average reading of 90% battery charge (3.82 V average, 4.0 V when fully charged), which 

demonstrated efficient use of energy. Records of pier cap accelerations and subsequently 

estimated displacements were obtained from the WSS. For an initial assessment of the structural 

condition, control chart analysis using Statistical Process Control (SPC) was applied to peak 

dynamic displacement measurements. 

Luo et al. (2021) applied WSSN to the Hangzhou East Railroad Station. The customized 

academic WSN system incorporates four distinct sensor types as its measuring components 

including a vibrating wire sensor node for monitoring strains, acceleration, temperature, and 

wind load. Each individual multitype sensing module facilitates the seamless operation of these 

diverse sensors within the network deployed at Hangzhou East Railway Station. The system 

includes 323 sensors that communicate with each other through a flexible tree-type network. It 

is used to measure various aspects of the structure during both the construction process and the 

in-service stage. Data is collected throughout the entire life cycle of the structure to better 

understand its complex states and internal force redistribution. 

Table 1. Full-scale applications of wireless sensor networks for structural health monitoring 

Study Structure Purpose Sensors Measurements No. of sensor 

nodes 

Phanish 

et al. 

2015 

Bobby Dodd 

Stadium 

Verify the 

accuracy of  

the new 

synchronization 

algorithm 

 LIS344ALH by 

STMicroelectronics 

Acceleration 40–50 nodes and 

5–10 cluster heads 

Potenza 

et al. 

2015 

Basilica S. 

Maria di 

Collemaggio 

building 

Assess a 

building's 

response to a 

real-world 

seismic event 

Accelerometer 

without specific 

names 

Acceleration 16 sensors 

Häckell 

et al. 

2016 

Wind turbine Validate and in-

situ test the 

Martlet wireless 

sensor nodes 

Martlet Acceleration 6 three-axis 

accelerometers and 

6 Martlet wireless 

sensor nodes 

Liu et 

al. 2016 

Concrete 

highway 

bridge 

Verify the 

reliability of 

Martlet's wireless 

sensing system 

Martlet Acceleration, 

strain, and 

displacement. 

29 Martlet units 



Baden 

et al. 

2018 

Pietratagliata 

bridge 

Verify the 

original MEMS 

accelerometer 

Accelerometer 

(Kionix KXR94-

2050) 

Acceleration 10 sensors 

Fu et al. 

2019 

Suspension 

Bridge 

Verify the 

fidelity of data 

acquisition 

Xnodes Acceleration 8 Xnode wireless 

smart sensors 

Tu et al. 

2020 

Nine timber 

trestle and two 

steel truss 

railroad 

bridges 

Assess the 

displacement-

based condition  

Xnodes Acceleration 2-3 sensors on 

each trestle bridge 

6–8 sensors on 

each steel truss 

railroad bridge 

Luo et 

al. 2021 

Hangzhou 

East Metro 

Station 

Monitor station 

state and internal 

force 

redistribution 

Various sensor 

nodes without 

specific names 

Stress, 

acceleration, 

wind load, and 

temperature 

323 sensors (49 

accelerometers, 

100 wind sensors, 

174 vibrating wire 

sensors and 

temperature 

sensors in total) 

 

4. Challenges and future studies 

Based on the investigations and literature review, several remaining challenges are revealed. In 

particular, some critical challenges include missing data due to event-triggered sensing, more 

complexity of the SHM algorithms, limited resources constraining the speed of data processing, 

needs of high sampling frequency and resolution, etc. Among the challenges, several critical 

ones are selected and elaborated in the following subsections, including limited power 

resources, insufficient computing capabilities, and environment vulnerabilities. For each one, 

future studies are also discussed accordingly.  

4.1 Limited power resources 

Wireless sensors are usually powered by batteries, which have limited capacity. (Lynch et al., 

2006) Once a battery has drained all of its charges, the node becomes inactive or requires 

manual replacement. Remote replacement of the component can be a costly, labor-intensive, or 

even impractical endeavor. Although extensive research efforts have focused on power saving 

and optimization, in many cases, wireless sensor lifetimes are still below the levels needed for 

intensive sensing applications. Power supply and reservation issue is still considered one of the 

most important challenges to prevent the adoption of WSSN to replace the wired counterparts 

in structural health monitoring. This motivates the optimization of the cluster size, utilization 

of lower-power mode sensor nodes and application of energy harvesting techniques. The most 

early and widely used energy sources are solar and wind power. (Cao & Li, 2017) However, its 

discontinuity for energy obtained from nature varies throughout the day and year and is absent 

sometimes when sensors are deployed in sheltered locations. (Grossi, 2021) Vibration energy 

harvesting is an alternative effective solution but its applicability is constrained by limitations 

such as the power generated by traffic-induced vibrations, particularly in the context of low 



data rate applications for WSN. (Gaglione et al., 2018) Future studies should focus on the 

development of innovative strategies to harvest energies more efficiently and reliably. On the 

other hand, adaptively putting WSS into low-power or even deep sleep modes using either rule-

based methods or data-driven algorithms are promising to make the power consumption more 

effective. 

4.2 Insufficient computing capabilities  

WSSNs are expected to generate large amounts of data in the future, which require sufficient 

resources to handle big data challenges. Recently, edge computing and cloud computing are 

being explored by researchers and engineers to transform raw data into information for 

subsequent informed decisions. However, limited resources in WSSN, such as memory storage 

space and microprocessor speed, limit the application complexity. It becomes more challenging, 

if complex algorithms or models, like machine learning, are about to be deployed in the WSSN, 

in recent years. On the other hand, the limited resources will also compromise the real-time 

execution performance, e.g., real-time data visualization of massively collected data. In 

addition, practical computing techniques are also desired to address long-term monitoring goals 

in full-scale applications. Future studies should be dedicated to the development of prevision 

and high-efficiency algorithms, strategies, or models suitable for computing in WSSN, with 

great potential for large-scale data processing and real-time execution. On the other hand, 

enhancing structural health monitoring capabilities using powerful edge/fog/cloud data 

architecture, including advanced hardware and flexible software, towards data-driven high-rate 

computing is another promising direction.  

4.3 Environment vulnerabilities 

Ensuring reliability in WSSN is a challenging problem due to the harsh environment and sensor 

vulnerability. Deployed in outdoor conditions, WSSN is susceptible to various natural 

phenomena, such as rain, snow, wind, thunder, and extreme temperature variation, resulting in 

frequent and unpredictable errors and accelerating the deterioration of sensor durability. 

(Mohapatra & Rath, 2020) For example, the strain gauge exhibits readings drift with 

temperature changes, necessitating the implementation of suitable compensation methods. 

(Dutta et al., 2021) In addition, WSSN is usually deployed in large-scale civil infrastructures, 

all sensors transmit measured data to the central location, and signal transmission interruptions 

make WSSN unreliable. Long-distance transmission as well as dramatically drains sensor 

batteries, reducing the reliability of the WSSN. Meanwhile, while traditional signal processing 

techniques can detect and isolate sensor faults, they often require significant human 

interventions to diagnose and recover them. When anomalous data is detected, differentiating 

between actual events, and measurement errors poses another challenge. It still lacks an 

automatic fault detection and localization mechanism, practicable for large-scale long-term 

deployment.  In sum, more efforts should be contributed to the use of advanced signal 

processing and efficient algorithms/strategies for reliable data collection, sensor fault detection 

and diagnosis, as well as network topology management and adaptation.  

 

 



5 Conclusions 

WSSN present a promising solution for long-term SHM by offering ease installation and lower 

costs than traditional wired counterparts. Various recent advances, including event-triggered 

sensing, multimeric sensing, and edge computing, have extended the functionalities of each 

sensor node for more complex applications. Likewise, series of technology improvements, such 

as time synchronization, real-time data acquisition, decentralized data processing, cloud 

computing, and long-term reliability, make WSSN work smoothly with each other in a timely 

and efficient manner. Despite of the advancements, there are still some limitations and 

challenges in wireless sensing technology, such as limited power resources, insufficient 

computing capabilities, and environment vulnerabilities. Much remains to be done to make this 

promising technology meet the requirements for monitoring and evaluating complex structures. 

Interdisciplinary efforts by civil, mechanical, electrical, and computer science engineering 

researchers are highly encouraged to further improve and facilitate the full-scale deployment 

of WSSNs.  
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